Assessment of the level of sustainable development of Chinese provinces depending on the effective-ness of use of energy resources
https://doi.org/10.38050/2078-3809-2025-17-1-151-167
Abstract
The article proposes a methodological approach that makes it possible to rank territories according to the level of sustainable development over time using the cluster analysis method. The approach is based on dividing regions into groups (clusters) according to selected indicators that reflect the economic, environmental and social development of the provinces. Testing of this approach on the example of the provinces of the People's Republic of China made it possible to identify the key factors that determine the movement of territories into sustainable development clusters. Based on the analysis of economic and energy policies in successful provinces, measures have been identified that contribute to the movement of provinces into clusters with a higher level of sustainable development. It is shown that the transition of provinces to clusters of a higher level of sustainable development is due to two main factors: - changing the structure of the energy balance due to access to pipeline natural gas (Yunnan, Heilongjiang provinces), development of nuclear (Liaoning province) and renewable energy (Guizhou, Hebei provinces); - increasing the environmental and economic efficiency of the use of energy resources by rationalizing energy production and energy consumption, as well as energy saving (provinces of Liaoning, Jiangxi, Guangxi, Qinghai, Henan, Anhui, Chongqing).
About the Authors
I. Yu. KhovavkoRussian Federation
Irina Yu. Khovavko, Doctor of Economics, Leading Researcher, Faculty of Economics
Moscow
Caiquan Zhou
China
Caiquan Zhou, Candidate of Economic Sciences (PhD), Faculty of Economics
Beijing
References
1. Andronova I.V., Sakharov A.G. Indeks ustoychivogo razvitiya stran BRIKS: metodologicheskie aspekty. Vestnik mezhdunarodnykh organizatsiy. 2022. Vol. 17. No. 3. P. 23–47. DOI: 10.17323/19967845-2022-03-02 (In Russ.).
2. Berdnikova O.M., Ledeneva T.M. Osobennost' provedeniya razdelyayushchey klasterizatsii dlya interval'nykh velichin. Vestnik VGU. Ser.: Sistemnyy analiz i informatsionnye tekhnologii. 2016. № 4. S. 134–141 (In Russ.).
3. Bobylev S.N., Minakov V.S., Solov'eva S.V., Tret'yakov V.V. Ekologo-ekonomicheskiy indeks regionov RF. Metodika i pokazateli dlya rascheta. WWF Rossii, RIA Novosti. 2012: URL: https://wwf.ru/upload/iblock/dc8/index.pdf (data obrashcheniya: 20.08.2024) (In Russ.).
4. Khovavko I.Yu., Chzhou Tsaytsyuan' Otsenka ekologo-ekonomicheskoy effektivnosti ispol'zovaniya energeticheskikh resursov Kitaya. Innovatsii i investitsii. 2024. No. 2. P. 92–98 (In Russ.).
5. Chen J., Yuan R., Zheng S. Decoupling and scenario analysis of economy-emissions pattern in China's 30 provinces. Environ Sci Pollut Res Int. 2023. No. 30 (7). P. 19477–19494. DOI: 10.1007/s11356-022-23466-y.
6. Tapio P. Toward a theory of coupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001 / P. Tapio. Transportation Policy. 2005. No. 12. P. 137– 151.
7. Van Litsyun, 2012 – 王丽琼.基于环境学习曲线的氮氧化物减排区域分解 / 王丽琼 // 泉 州师范学院学报,2012,30(06):63-66 [Van Litsyun Regional'nye sokrashcheniya vybrosov oksidov azota na osnove krivoy okruzhayushchey sredy. Tsyuan'chzhou shifan' syueyuan' syuebao [Vestnik pedagogicheskogo universiteta Tsyuan'Chzhou]. 2012. T. 30. S. 63–66] (In Chinese).
8. Lyan' Shuymin, Li Tszun"in, Syuy Chzhunlin, 2021 – 连帅明.新疆经济发展、能源消费和 二氧化碳时空脱钩分析 / 连帅明,李宗英,许仲林. 煤炭经济研究,2021,41(08):4-10 [Lyan' Shuymin, Li Tszun"in, Syuy Chzhunlin Analiz prostranstvenno-vremennogo dekaplinga ekonomicheskogo razvitiya, potrebleniya energii i uglekislogo gaza v Sin'tszyane. Meytan' tszintszi yan'tszyu [Ugol'nye ekonomicheskie issledovaniya]. 2021. Vol. 41. P.4–10] (In Chinese).
9. Syue Tszyan'chun', Tsao Libo, 2023 – 薛建春.基于脱钩指数和 LMDI 模型的黄河流域能 源低碳发展研究/ 薛建春,曹力博 // 前沿,2023(01):70-79 [Syue Tszyan'chun', Tsao Libo Issledovanie razvitiya nizkouglerodnoy energetiki v basseyne reki Khuankhe na osnove indeksa dekaplinga i modeli LMDI. Tsyan yan' [Peredovoy]. 2023. No. 1. P.70–79] (In Chinese).
10. Fan' Fen"yan', Du Tsinkun', 2017 – 范凤岩.中国钢铁工业经济增长与能源消费响应关系 研究 / 范凤岩,杜庆坤. 中国矿业,2017,26(03):28-33 [Fan' Fen"yan', Du Tsinkun' Issledovanie vzaimosvyazi mezhdu ekonomicheskim rostom chernoy metallurgii Kitaya i reaktsiey na potreblenie energii. Chzhungo kuane [Kitayskaya gornodobyvayushchaya promyshlennost']. 2017. Vol. 26. P. 28– 33] (In Chinese).
11. Chzhou Yan'nan', Yan Yuy, Cheng Bo, Khuan Tszis, 2020 – 周彦楠.基于脱钩指数和 LMDI 的中国经济增长与碳排放耦合关系的区域差异 / 周彦楠,杨宇,程博,黄季夏 // 中国科学院大学 学报,2020,37(03):295-307 [Chzhou Yan'nan', Yan Yuy, Cheng Bo, Khuan Tszis Regional'nye razlichiya v vzaimosvyazi mezhdu ekonomicheskim rostom Kitaya i vybrosami ugleroda na osnove indeksa dekaplinga i LMDI. Chzhungo kesyueyuan' dasyue syuebao [Vestnik Universiteta Kitayskoy akademii nauk]. 2020. T. 37. S. 295–307] (In Chinese).
12. Reyting ustoychivogo razvitiya gorodov. 2022: Available at: https://ce53485.tmweb.ru/upload/iblock/986/9861afc747dcb868c25aed0e2a7d1fbd.pdf (accessed: 20.08.2024) (In Russ.).
13. Global Green Growth Institute (GGGI) (n.d.) Green Growth Index: Scores and Ranks. 2022: URL: https://greengrowthindex.gggi.org/?page_id=2547 (accessed: 20.08.2024).
14. Environmental Performance Index (EPI). 2022. EPI Results: Available at: https://epi.yale.edu/epi-results/2020/component/epi (accessed: 20.08.2024).
Review
For citations:
Khovavko I.Yu., Zhou C. Assessment of the level of sustainable development of Chinese provinces depending on the effective-ness of use of energy resources. Scientific Research of Faculty of Economics. Electronic Journal. 2025;17(1):151-167. (In Russ.) https://doi.org/10.38050/2078-3809-2025-17-1-151-167